CHAPTER SUMMARY

Proteins are polymers of amino acids. With 20 different fundamental amino acids as building blocks, an extraordinarily large variety of proteins can be biosynthesized under the direction of the genetic code.

16.1 Structure of Amino Acids
A. Fundamental Structure - An Amine and An Acid
As the term amino acid describes, each monomer has an amine group and a carboxylic acid group attached to a prochiral carbon. In addition side chains can also be present. These range from a simple hydrogen to long carbon chains with functional groups.

B. Ionization of Amino Acids
The amine and carboxyl groups exhibit typical acid-base behavior which is pH-dependent. At low pH both groups are protonated: the amine group has a plus (+) charge and the carboxyl is neutral (0). As the pH rises the carboxyl loses its proton becoming negatively charged (-). At higher pH values the amine (+) deprotonates to produce a neutral amine (0). The result of this sequential deprotonation is a series of charged forms ranging from + to 0 to -. If the side chains are capable of acid-base reactions, the number of possible charged forms depends upon the number and types of amino acids present, the pH, and the pK_a of each ionizable group. This is true of proteins as well as amino acids. The pH at which the molecule has a net
charge of zero, the **zwitterion form**, is called the **pI** or isoelectric (isoelectronic) state. The pI can be calculated by taking the average of the two pK\textsubscript{a} values on either side of the zwitterion form. At a pH lower than the pI the molecule will be in a net + charged form while at a pH greater than the pI it will be in a net - charged form. Charged forms can be separated in an electric field, a process known as **electrophoresis**.

C. The Common Amino Acids

There are 20 common amino acids which can be grouped by the nature of the R side chain. Our groups are acidic, basic, alkyl, polar, aromatic, sulfur-containing, and cyclic.

16.2 The Peptide Bond: Formation of Polypeptides and Proteins

Polypeptides and proteins are the products of amide, or **peptide bond** formation between the amine group of one amino acid and the carboxyl of another.

16.3 The Hierarchy of Protein Structure

A. Primary Protein Structure - The Sequence of Amino Acids

The sequence of amino acids in the polymer, from the free amino- or N-terminus to the free carboxyl- or C-terminus, is called the **primary (1o) structure** of a protein. This sequence is dictated by the genetic code.

B. Secondary Protein Structure - Helices and Pleated Sheets

A peptide bond has partial double bond character that makes it planar; the geometry is usually trans. As the polypeptide chain grows, the peptide bond can participate in hydrogen bonding - amide hydrogen to carbonyl oxygen. Because of the geometry of the peptide bond, this hydrogen bonding goes on between amino acids which are distant from each other. Organized, folded **secondary (2o) structures** are formed. The **alpha helix** and **beta pleated sheet** are the two most common secondary structures. In the alpha helix hydrogen bonding usually occurs between the peptide bonds of four amino acids distant from each other. Beta structure involves the polypeptide chain in its fully extended form coming back on itself to hydrogen bond side-to-side. The two polypeptide strands in beta structures may be **parallel** or **antiparallel** to each other.
Secondary structures are, in turn, organized into domains, or supersecondary structures.

Collagen, which is the most abundant protein of the body, has unique primary and secondary structures. A high glycine and proline content leads to fairly rigid, kinked strands which can intertwine in a triple helical structure held together by hydrogen bonding between strands. The collagen helices aggregate to form skin, bone and connective tissue.

C. Protein Tertiary Structure
Side chains of the amino acids participate in tertiary (30) structure, that is, they stabilize the overall conformation of the protein molecule. The forces which hold tertiary structure together include covalent (disulfide bridges) and noncovalent (hydrogen bonding, salt bridge, hydrophobic) interactions. Shapes of tertiary structure subunits can be globular or fibrous.

D. Quaternary Protein Structure - Association of Subunits
Many proteins have more than one folded subunit, linked by the same types of noncovalent forces which hold 30 structure together. All of the subunits are needed for the protein to function properly. This is known as quaternary (40) structure.

E. Complex Proteins - Proteins Plus
All of the interactions mentioned above are integral parts of the simple structure of a protein. In addition proteins may have cofactors such as metal ions, carbohydrates or lipids, and/or organic molecules associated with them. This makes the proteins complex. Myoglobin and hemoglobin are examples of related complex proteins. Myoglobin has a single globular protein subunit complexed with an organic heterocyclic system known as heme. The heme in turn holds an iron (II) ion which can bind molecular oxygen, O\textsubscript{2}. All of these components contribute to the function of myoglobin: the storage of oxygen in muscle tissue. Hemoglobin is related to myoglobin both structurally and functionally. It contains four myoglobin-type subunits each of which has an iron(II)-heme complex that can bind O\textsubscript{2}. However, the four subunits interact cooperatively in order to transport oxygen in the blood from the lungs to the cells.
CONNECTIONS 16.1 Sickle Cell Anemia - A Biochemical Disease

F. Denaturation

The forces which hold a protein molecule together can be disrupted by changes in temperature and pH as well as by organic solvents and mechanical manipulation. This is known as denaturation.

CONNECTIONS 16.2 Mad Cow Disease

16.4 Functions of Proteins

With the great structural versatility available, proteins exhibit a phenomenal breadth of function. Catalysis, protection and regulation were but three discussed in this chapter.

A. Enzymes - Biological Catalysts

Enzymes are proteins which act as catalysts to the complex reactions that occur in the metabolism of living organisms. These reactions include oxidation-reduction, the formation and breaking of carbon-carbon, carbon-nitrogen, and other bonds, hydrolysis, synthesis, group transfer, and isomerization. An enzyme functions by presenting an interactive, three dimensional environment to the reactants (substrates). This allows the reaction to be stereospecific, rapid, and selective, that is, producing few, if any, spurious by-products. The active site of an enzyme has a substrate binding subsite and a group of amino acids which effect catalysis, the catalytic site. Nonprotein components are common partners in a cooperative catalytic process.

B. Enzyme Control

The actions of enzymes can be controlled and/or modified by species known as inhibitors or an enzyme may be activated/inactivated by covalent modification. Most enzymes have precursor forms which are inactive. These are known as zymogens.

C. Antibodies - Immune System Protection

The complex protective network of higher organisms is called the immune system. One part consists of glycoproteins (carbohydrate-protein) called antibodies. Antibodies bind to foreign substances, antigens, and help to mark and destroy the invader. This assault is a key component to the process of immunization in which the immune system is trained to respond aggressively to unwanted toxins, bacteria,
and viruses. The specificity of antibodies has proven invaluable in diagnostics and has high potential for targeted medications.

CONNECTIONS 16.3 Testing for Drugs, Pregnancy, and AIDS

D. Polypeptide and Protein Hormones - Metabolic Regulation

The regulation of metabolism is in part due to polypeptide and protein hormones, the products of the endocrine system. With the development of recombinant DNA techniques, specific protein hormones can now be made using bacteria and yeast. There has been ongoing discussion and controversy concerning the genetic manipulation of proteins for medical and commercial purposes.

CONNECTIONS 16.4 Growth Hormone

16.5 Determination of Protein Structure

There exists a general consensus that the primary structure of a protein eventually determines its tertiary structure. Therefore it is extremely important to be able to study a protein’s primary structure.

A. Amino Acid Composition

Amino acid content is found by complete hydrolysis of the peptide bonds, separation of the constituent amino acids by column chromatography, and quantitation using reagents such as ninhydrin or dansyl chloride. However, this gives us no information about the N- to C-sequence.

B. Sequence of Amino Acids - Determination of Primary Structure

Sequential analysis can be accomplished by using the Edman technique. Treatment of an intact polypeptide with phenylisothiocyanate derivatizes the N- amino acid leaving the rest of the peptide intact for further Edman degradation. Large chains must be fragmented into shorter peptides, more easy to work with chemically. Cleavage of peptide bonds at specific amino acid residues is accomplished using enzymes such as trypsin (Lys, Arg), chymotrypsin (aromatics), and carboxypeptidase (C-terminus amino acids).
16.6 Organic Synthesis of Polypeptides

A. General Considerations
Polypeptides can be produced synthetically by reactions common to organic chemistry. Since both the amine and carboxyl groups are functionally active, a general procedure of functional group blocking, activation of other groups, and coupling of amino acids is carried out.

B. Solid-State Synthesis
An organized series of synthesis reactions can conveniently be carried out using the solid state, that is, columns to which the growing polypeptide chain is attached while various reagents are washed through.

An understanding of proteins is essential for appreciating the link between organic chemistry and biochemistry.

SOLUTIONS TO PROBLEMS

16.1 Amino Acid Structure: Ionization Section 16.1B
Arginine, lysine, and histidine have (+1) to (0) ionization transitions, while aspartic acid, glutamic acid, cysteine, and tyrosine have (0) to (-1) transitions.

16.2 Ionized Forms of Amino Acids: Section 16.1

Lysine

\[
\begin{align*}
\text{H}_3\text{NCHCOH} & \rightleftharpoons \text{H}_3\text{NCHCO}^- & \text{H}_2\text{NCHCO}^- & \rightleftharpoons & \text{H}_2\text{NCHCO}^-
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{O} & \quad \text{O} \\
\text{pK}_a \text{ values are boxed.} & \quad \text{pK}_a \text{ values are boxed.} & \quad \text{pK}_a \text{ values are boxed.}
\end{align*}
\]

\[
\begin{align*}
\text{NH}_3^+ & \quad \text{NH}_3^+ & \quad \text{NH}_3^+ & \quad \text{NH}_2 \\
8.9 & \quad 2.2 & \quad 10.3 & \quad -1
\end{align*}
\]

Net Charge

+2 \quad +1 \quad 0 \quad -1
Glutamic Acid

\[
\begin{align*}
\text{H}_3\text{NCHCOH} & \rightleftharpoons \text{H}_3\text{NCHCO}^- & \text{H}_2\text{NCHCO}^- & \rightleftharpoons \text{HNCHCO}^- \\
9.7 & (\text{CH}_2)_2 & 4.3 & \text{COOH} & \text{COO}^- & \text{COO}^- \\
+1 & 0 & -1 & -2 & \text{Net Charge}
\end{align*}
\]

Alanine

\[
\begin{align*}
\text{H}_3\text{NCHCOH} & \rightleftharpoons \text{H}_3\text{NCHCO}^- & \text{H}_2\text{NCHCO}^- & \rightleftharpoons \text{HNCHCO}^- \\
9.9 & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 \\
+1 & 0 & -1 & \text{Net Charge}
\end{align*}
\]

Tyrosine

\[
\begin{align*}
\text{H}_3\text{NCHCOH} & \rightleftharpoons \text{H}_3\text{NCHCO}^- & \text{H}_2\text{NCHCO}^- & \rightleftharpoons \text{HNCHCO}^- \\
9.1 & \text{CH}_2 & \text{CH}_2 & \text{CH}_2 & \text{CH}_2 \\
\text{OH} & \text{OH} & \text{OH} & \text{OH} & \text{O}^- & \text{pK}_a \text{ values are boxed.} \\
+1 & 0 & -1 & -2 & \text{Net Charge}
\end{align*}
\]
16.3 Acid-Base Behavior of Amino Acids: Section 16.1B

Aspartic Acid

Serine

Arginine

Equivalents of base added

Equivalents of base added

Equivalents of base added
16.4 Ionization of Amino Acids: Section 16.1

<table>
<thead>
<tr>
<th>Group</th>
<th>pK_a</th>
<th>Charge Change</th>
<th>Charge at pH 8.7</th>
<th>Movement</th>
</tr>
</thead>
<tbody>
<tr>
<td>glutamic acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-COOH</td>
<td>2.2</td>
<td>0 \rightarrow -1</td>
<td>-1</td>
<td>towards</td>
</tr>
<tr>
<td>α-NH$_2$</td>
<td>9.7</td>
<td>+1 \rightarrow 0</td>
<td>+1</td>
<td>(+) pole</td>
</tr>
<tr>
<td>R</td>
<td>4.3</td>
<td>0 \rightarrow -1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>arginine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-COOH</td>
<td>2.2</td>
<td>0 \rightarrow -1</td>
<td>-1</td>
<td>towards</td>
</tr>
<tr>
<td>α-NH$_2$</td>
<td>9.1</td>
<td>+1 \rightarrow 0</td>
<td>+1</td>
<td>(-) pole</td>
</tr>
<tr>
<td>R</td>
<td>11.8</td>
<td>+1 \rightarrow 0</td>
<td>+1</td>
<td></td>
</tr>
<tr>
<td>threonine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-COOH</td>
<td>2.2</td>
<td>0 \rightarrow -1</td>
<td>-1</td>
<td>no</td>
</tr>
<tr>
<td>α-NH$_2$</td>
<td>9.1</td>
<td>+1 \rightarrow 0</td>
<td>+1</td>
<td>movement</td>
</tr>
<tr>
<td>R</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tyrosine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-COOH</td>
<td>2.2</td>
<td>0 \rightarrow -1</td>
<td>-1</td>
<td>no</td>
</tr>
<tr>
<td>α-NH$_2$</td>
<td>9.1</td>
<td>+1 \rightarrow 0</td>
<td>+1</td>
<td>movement</td>
</tr>
<tr>
<td>R</td>
<td>10.1</td>
<td>0 \rightarrow -1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>histidine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-COOH</td>
<td>1.8</td>
<td>0 \rightarrow -1</td>
<td>-1</td>
<td>no</td>
</tr>
<tr>
<td>α-NH$_2$</td>
<td>9.0</td>
<td>+1 \rightarrow 0</td>
<td>+1</td>
<td>movement</td>
</tr>
<tr>
<td>R</td>
<td>6.0</td>
<td>+1 \rightarrow 0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

16.5 Ionization of Amino Acids: Section 16.1

Histidine

\[
pI = \frac{6.0 + 9.0}{2} = 7.5
\]
16.6 Ionization of Amino Acids: Section 16.1

Glutamine

- **Formula:** H_3NCHCOH
- **Net Charge:** +1
- **pI:** $\frac{2.2 + 9.7}{2} = 5.95$

The pI for Gln is higher than that for Glu due to the loss of ionizability of the side chain carboxyl group.
16.7 Ionization of Amino Acids: Section 16.1
See problems 16.4 and 16.5 for ionization information.
Histidine would most likely be in the 0 or zwitterion form at pH 6.8.
Tyrosine should be in its -2 form at pH 13.4.

16.8 Chirality of Amino Acids: Section 16.1

L-alanine is S.

D-alanine is R.

16.9 Chirality of Amino Acids: Section 16.1 Glycine is optically inactive because it has two hydrogens on the alpha carbon (C-2). Four different groups are required for optical activity.

16.10 Polypeptides: Structure
16.11 Ionization of Polypeptides: Sections 16.1 and 16.2

\[pI = \frac{9.0 + 11.8}{2} = 10.4 \]

The net charge at pH 7.4 will be +1.

16.12 Hierarchy of Protein Structure: Section 16.3B

At pH 7.4 polyaspartic acid would have a large net negative charge on its side chains while polylysine would have a large net positive charge. This would cause repulsion of the R groups and lead to helix destabilization.

16.13 Hierarchy of Protein Structure: Section 16.3B

Polythreonine has an alcohol group and a methyl group on the beta carbon. Polyisoleucine has a methyl and an ethyl group on this carbon. The presence of groups which can hydrogen bond or which introduce bulk close to the polypeptide backbone seem to be impediments to the formation of helical segments.

16.14 Hierarchy of Protein Structure: Section 16.3B

Leu, Ala, Ser, and Tyr would be "comfortable" in alpha helices because they have either small side chains (Ala and Ser) or extended alkyl groups (Leu) or a planar structure (Tyr).
Ala, Ser, and Gly could work in a beta sheet structure because of their small or nonexistent side chains which could allow the stacking of beta chains.

Pro with its ring structure would not fit into either of the conventional secondary structures but rather would be a place where one secondary structure could transition into another. Gly, with its ability for free rotation, could also be found at bends and breaks in regular secondary structure.

Lys has a charged, nitrogen-containing side chain under most pH conditions. It could exist in an alpha helix if there weren't any other positively charged groups in the area. Also at pHs above the pK$_a$ of the R group, Lys would be "happy" in a helix.

16.15 Hierarchy of Protein Structure: Section 16.3C

16.16 Hierarchy of Protein Structure: Section 16.3C
a) Thr and H$_2$O - hydrogen bonding
b) Asn and Trp - hydrogen bonding
c) Asp and Glu - repulsive forces
d) His and Val - hydrophobic interactions if above pH 6.0

16.17 Hierarchy of Protein Structure: Section 16.3F
Since the interior of a water soluble protein has a large degree of hydrophobicity or nonpolarity, nonpolar O$_2$ and N$_2$ could stabilize the denaturation of a protein by exposing the nonpolar interior to the air.
16.18 **Hierarchy of Protein Structure:** Section 16.3
Salt bridges and ion-dipole interactions would be upset by lowering the pH of a protein solution.

16.19 **Determination of Protein Structure:** Section 16.5B
Two more cycles of degradation on the polypeptide remaining in Example 16.3 would produce PTH-Tyr, PTH-Gly and free Met.

\[
\begin{align*}
\text{PTH-Tyr} & & \text{PTH-Gly} \\
\end{align*}
\]

16.20 **Determination of Protein Structure:** Section 16.5B
The theoretical yield for a five-step N-terminal sequential degradation would be

- **Step 1:** 85%
- **Step 2:** \((0.85) \times 85\% = 72.25\%\)
- **Step 3:** \((0.85) \times 72.25\% = 61.4\%\)
- **Step 4:** \((0.85) \times 61.4\% = 52.2\%\)
- **Step 5:** \((0.85) \times 52.2\% = 44.4\%\)

16.21 **Determination of Protein Structure:** Section 16.5B
Chymotrypsin digestion of the polypeptide in Example 16.4 would have produced the fragments: Gly ~ His ~ Lys ~ Gly ~ Phe and free Ile.

Trypsin digestion followed by chymotrypsin would produce the following three fragments: Gly ~ His ~ Lys, Gly ~ Phe and free Ile.

16.22 **The Organic Synthesis of Polypeptides:** Section 16.6
For the hypothetical amino acids - A, B, C, and D - 4! or 24 possible combinations exist.

- ABCD
- ABDC
- ACDB
- ACBD
- ADBC
- ADDB
- BDAC
- BDCA
16.23 Structure: Section 16.1

- a) glycine
- b) tyrosine
- c) cysteine
- d) all except Gly, Thr, Ile
- e) proline
- f) serine, threonine, asparagine, glutamine, histidine, tryptophan, tyrosine
- g) threonine, isoleucine

16.24 Structure: Section 16.2

16.25 Structure: Sections 16.1 and 16.5

The amino acids, from N- to C-termini are: Glu, Ile, Thr, Lys.
16.26 Structure: Section 16.1

a. \[\text{H}_3\text{N} - \text{Tyr} \sim \text{Gly} \sim \text{Gly} \sim \text{Phe} \sim \text{Met} - \text{COOH} \]
 \[\text{pI} = \frac{2.3 + 9.1}{2} = 5.7 \]

b. \[\text{Phe} \sim \text{Phe} \sim \text{Asn} \sim \text{Lys} \sim \text{Cy} \sim \text{Gly} \sim \text{Ala-NH}_3^+ \]
 \[\text{pI} = 10.3 \]

At low pH this polypeptide has a +3 charge.
At pH>1.7 it will be +2; at pH> 9.9 it will be +1.
The next two ionizable groups are both lysines. The average of their pK_a's will be 10.3.

16.27 Structure: Sections 16.1 and 16.2

To associate with the negatively charged nucleic acids, histones would have a net positive charge, that is, they are basic. The basic amino acids are lysine and arginine with some contributions from histidine, depending upon the pH.

16.28 Structure: Sections 16.1, 16.2, and 16.4

Keep in mind that each hemoglobin molecule has two \(\alpha \) and two \(\beta \) chains. Using normal hemoglobin, HbA, as a starting point, find the change in charge which occurs with the change in amino acid.

<table>
<thead>
<tr>
<th>Hb variant</th>
<th>chain</th>
<th>position from N-terminus</th>
<th>AA in HbA</th>
<th>AA in variant</th>
<th>Charge alteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>(\beta)</td>
<td>6</td>
<td>Glu</td>
<td>Val</td>
<td>change of +2</td>
</tr>
<tr>
<td>C</td>
<td>(\beta)</td>
<td>6</td>
<td>Glu</td>
<td>Lys</td>
<td>change of +4</td>
</tr>
<tr>
<td>Chesapeake</td>
<td>(\alpha)</td>
<td>92</td>
<td>Arg</td>
<td>Leu</td>
<td>change of -2</td>
</tr>
<tr>
<td>Hasharon</td>
<td>(\alpha)</td>
<td>47</td>
<td>Asp</td>
<td>His</td>
<td>change of +2</td>
</tr>
<tr>
<td>Koln</td>
<td>(\beta)</td>
<td>98</td>
<td>Val</td>
<td>Met</td>
<td>no change</td>
</tr>
</tbody>
</table>
16.29 **Hierarchy of Protein Structure:** Section 16.3

a) 4\(^0\) b) 3\(^0\),4\(^0\) c) 2\(^0\),3\(^0\),4\(^0\) d) 1\(^0\) e) 3\(^0\),4\(^0\) f) 3\(^0\)

16.30 **Hierarchy of Protein Structure:** Section 16.3

a) hydrogen bonding b) hydrophobic interactions
c) salt bridges
 d) none

16.31 **Determination of Protein Structure:** Section 16.5

Three cycles of the Edman degradation would produce three PTH-amino acids and a free amino acid.

- PTH-Leu
- PTH-Met
- PTH-His
- Ser
- H\(_3\)N\(\text{CHCOOH}\)
- CH\(_2\)OH
16.32 Determination of Protein Structure: Section 16.5

At this point it looks like we have confirmation of the C-terminus and an idea of the N-terminus.

C-terminus is Ala~Leu~Phe

16.33 Determination of Protein Structure: Section 16.5

This digest confirms the sequence:

Leu~Arg~Tyr~Ile~Phe~Lys~Ala~Leu~Phe
Proteins

Chapter 16

(Ala₁ Gly₁ Phe₁) Lys Arg

dansyl chloride

DNS-Ala

Sequence is Ala~(Gly, Phe)

Lys must be at N-terminus

Arg must be the next amino acid in

Peptide A

(Ala₁ Arg₁ Gly₁ Lys₁ Phe₁) Phe

Sequence is unknown at this point

Phe must be at the C-end of peptide A because chymotrypsin cleaves at aromatics

trypsin

Peptide C + free amino acids

Peptide B

(Leu₁ Lys₁ Ala₁)

Sequence is unknown at this point

Lys~Arg~(Ala, Gly)Phe from peptide C

(Ala₁ Gly₁ Leu₁ Phe₁) Lys~Ala from peptide D

Lys~Arg~(Ala,Gly)~Phe~Leu~Lys~Ala from above and peptides A/B

Lys~Arg~Ala~Gly~Phe~Leu~Lys~Ala

sequence from peptide C dansylation

N-terminus is Lys

peptide A

C-terminus is Ala

peptide B

peptide D + free amino acids

Lys~Arg~(Ala,Gly)~Phe~Leu~Lys~Ala

from above and peptides A/B

Lys is probably at N-terminus; Arg may precede it.

But Ala is at C-terminus.

The key factor is to keep an open mind while piecing the fragments together.