"You have two choices", jamf cried, his last lecture of the year ... "stay behind with carbon and hydrogen, take your lunch-bucket in to the works every morning with the faceless droves who can't wait to get in out of the sunlight or move beyond. Silicon, boron, phosphorus -- these can replace carbon, and can bond to nitrogen, instead of hydrogen -- move beyond life, toward the inorganic. Here is no frailty, no mortality -- here is Strength, and the Timeless." Then his well-known finale, as he wiped away the scrawled C-H on his chalkboard and wrote, in enormous letters, Si-N.

The wave of the future.

from Gravity's Rainbow by Thomas Pynchon

\[
M_n = \frac{\Sigma N_i M_i}{\Sigma N_i} \quad M_w = \frac{\Sigma N_i M_i^2}{\Sigma N_i M_i}
\]

\[
\frac{\pi}{c} = \frac{RT}{M} (1 + Ac)
\]

\[
\frac{\eta_{sp}}{c} = [\eta] + k'[\eta]^2c \quad \quad [\eta] = KM^n
\]

\[
\log ([\eta_x] M_x) = \log ([\eta_y] M_y)
\]

Average 67.6
Median 65
High 83

\[\begin{array}{cc}
80 & 2 \\
70 & 3 \\
60 & 6 \\
50 & 2 \end{array}\]

\[\overline{72 + \text{SBK}}\]
1. (9) For each of the following, name the polymer, and name and give structure(s) for monomer(s).

 a) \([\text{CH}_2-\text{CH-O}]\)
 \[\text{CH}_3\]
 poly (propylene glycol)
 \(\text{HO-CH}_2-\text{CH-OH}\)
 \(\text{CH}_2\)
 poly (propylene oxide)
 \(\text{CH}_2-\text{CH-CH}_3\)
 propylene oxide

 b) \([\text{CH}_2-\text{C}=\text{CH-CH}_2-\text{CH}_2-\text{CH}_2]\)
 \[\text{CH}_3\]
 poly (isoprene-co-ethylene)
 \(\text{CH}_2\)
 isoprene
 \(\text{CH}_2=\text{C-CH=CH}_2 + \text{CH}_2=\text{CH}_2\)
 ethylene

 c) \([\text{C-CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{NH}]\)
 \(\text{O}\)
 nylon 6 or poly caprolactam
 \(\text{NH}\)
 caprolactam

2. (9) Give the structure and name of monomers which could be used to produce each of the following. Also show the repeat unit — show stereochemistry clearly, if necessary.

 a) cis-1,4-polyisoprene
 \(\text{CH}_3\)
 \(\text{CH}_2\)
 \(\text{CH}_2\)
 \(\text{CH}_2\)
 \(\text{CH}_2\)
 \(\text{H}\)
 \(\text{CH}_2\)
 \(\text{CH}_2\)
 \(\text{CH}_2\)
 \(\text{CH}_2\)
 \(\text{CH}_2\)

 b) isotactic poly(vinyl chloride)
 \(\text{CH}_2\)
 \(\text{CH}_2\)
 \(\text{CH}_2\)
 \(\text{CH}_2\)
 \(\text{CH}_2\)
 \(\text{Cl}\)
 \(\text{Cl}\)
 \(\text{Cl}\)

 c) a polyurethane
 \(\text{CH}_3\)
 \(\text{N}\)
 \(\text{C} =\text{O}\)
 \(\text{N}\)
 \(\text{C} =\text{O}\)
 \(\text{HO-CH}_2-\text{CH}_2-\text{OH}\)
 \(\text{CH}_2\)
 \(\text{CH}_2\)
 \(\text{CH}_2\)
 \(\text{O}\)
 \(\text{H}\)
 \(\text{CH}_3\)
 \(\text{CH}_2\)
 \(\text{CH}_2\)
 \(\text{CH}_2\)
 \(\text{O}\)
3. (10) A sample of poly(ethylene terephthalate) was fractioned with the following results:

<table>
<thead>
<tr>
<th>molecular weight (g/mol)</th>
<th>mass (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0x10^4</td>
<td>10.0 g</td>
</tr>
<tr>
<td>2.5x10^4</td>
<td>25.0 g</td>
</tr>
<tr>
<td>5.0x10^4</td>
<td>20.0 g</td>
</tr>
<tr>
<td>1.0x10^5</td>
<td>5.0 g</td>
</tr>
</tbody>
</table>

Determine M_n, M_w, DP_n, and the polydispersity.

<table>
<thead>
<tr>
<th>M_n</th>
<th>g</th>
<th>n</th>
<th>nM</th>
<th>nM^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>10</td>
<td>0.001</td>
<td>10</td>
<td>10000</td>
</tr>
<tr>
<td>25000</td>
<td>25</td>
<td>0.001</td>
<td>25</td>
<td>625000</td>
</tr>
<tr>
<td>50000</td>
<td>20</td>
<td>0.0004</td>
<td>20</td>
<td>1000000</td>
</tr>
<tr>
<td>100000</td>
<td>5</td>
<td>0.00005</td>
<td>5</td>
<td>500000</td>
</tr>
<tr>
<td>185000</td>
<td>60</td>
<td>0.00245</td>
<td>60</td>
<td>2225000</td>
</tr>
</tbody>
</table>

$M_n = 2.4E+04$

$M_w = 3.7E+04$

4. (10) Compare and contrast step growth and chain growth polymerizations. For each, list type of monomer(s), constituents of reacting mixture, relative speed of reaction, requirements for high polymer.

<table>
<thead>
<tr>
<th>Step growth</th>
<th>Monomer type (give example)</th>
<th>Reaction mixture</th>
<th>Relative speed</th>
<th>Requirements for high polymer</th>
</tr>
</thead>
<tbody>
<tr>
<td>14O - C => C - O - C - O</td>
<td>di-functional</td>
<td>all sizes under control</td>
<td>slow</td>
<td>1:1 stoichiometric, no byproducts</td>
</tr>
<tr>
<td>Chain growth</td>
<td>monomer + growing chains</td>
<td>fast</td>
<td>no chain transfer, initiator</td>
<td></td>
</tr>
</tbody>
</table>
5. (12) Discuss the importance of polymer solutions.

a) Are polymers generally easier or more difficult to get into solution than small molecules? Why?

\[\Delta G = \Delta H - T \Delta S < 0 \]

\[\Delta S \text{ not as large - polymer restricts state} \]

\[\Delta H \text{ usually > 0; polymers have high Tf.} \]

b) How do you choose a solvent for a particular polymer?

want similar Tf - use solubility parameters - get similar solubility parameters for solvent & polymer

c) What is the difference between a good solvent and a poor solvent?

Good: strong solute-solvent force - polymer will expand

Poor: weak Tf, polymer contracted

d) Describe the "solution process", that is, what happens when the polymer and solvent are mixed, on a molecular level.

1st polymer absorbs solvent & swells, then, if solvent can overcome all interactions, polymer-polymer forces, it dewets.

e) Discuss the change in enthalpy, entropy, and free energy when forming a polymer solution. Compare signs and magnitudes to those for "simple" solutions of small molecules.

\[\Delta G \text{ must be < 0 for both:} \]

- for same monomer & polymer in same solvent

\[\Delta G \text{ is more negative than for monomer} \]

\[\Delta G \text{ solution} \]

\[\Delta S \text{ small > 0} \]

\[\Delta H \text{ usually > 0} \]

\[\text{can be > 0, < 0 or = 0} \]
6. (12) a) What common features do viscosity and osmotic pressure have in common as techniques for polymer molecular weight determination?

b) What are the principal differences?

- Absolute, \(M_n \) is more consistent.
- Relative - mod. \(M_n \) & \(M_w \), quicker \(M_w \)

c) Why do we extrapolate the data to zero concentration in each case (give a molecular description)?

- Want ideal polymer solution - no polymer-polymer IF

- \(\frac{1}{\eta} = \frac{1}{\eta} \) vs C int. = \[M_w \]
- \(\eta \) vs C int. = \[M_n \]

7. (6) A sample of a polymer molecule with acid groups (-COOH) at each end (and no other free acid groups) was analyzed and the acid groups made up 0.01270% of the mass of the polymer. What is its molecular weight? Which molecular weight average is this?

- \(2 \text{ (COOH)} = 90 \text{ g/mol} \)
- In one gram polymer \(\frac{0.000129}{90 \text{ g/mol}} = 1.3 \times 10^{-6} \text{ mol} \)
- \(\frac{1.09}{1.3 \times 10^{-6} \text{ mol}} = 8.5 \times 10^5 \text{ g/mol} \)
b) What is in the column (assume using a solvent-based system, not water)?

- gel PS-divinyl benzene

3. c) How is a GPC instrument "calibrated"?

- mono disperse PS stds.

4. d) What is a "universal calibration curve"? How is it used?

- \[\text{log MW} \]

\[\text{CN} \]

5. e) What limitations does GPC have?

- must be in solution (TDHF)
- need K&G calibration
- costly

6. f) What is the primary advantage of GPC over other molecular weight determination techniques?

- get entire MW dist.
9. (12) a) List the steps involved in free radical chain growth polymerization. Name each step and show the basic reaction(s) for each step. Show a possible initiator (name and structure):

\[\text{Initiation: } I \rightarrow \text{C} = \text{O} - \text{O} - \text{C} - \text{O} \]

for example

\[\text{Propagation: } M_n + M \rightarrow M_{n+1} \]

\[\text{Coupling: } M_n + M_m \rightarrow M_{n+m} \]

\[\text{Termination: } M_n + M_n \rightarrow M_{n+m} \]

\[\text{Deproportionation: } M_n + M_m \rightarrow M_n + M_m \]

\[\text{Chain transfer: } M_n + X \rightarrow M_n + X \]

\[X = \text{solvent, monomer, other} \]

b) How would this differ if an anion was used rather than a free radical? What would be a possible initiator? What are the advantages of this over free radical polymerization?

no termination, "living" polymer, make block copolymers, narrow MW distribution

Na\(\text{CO}_3\) sodium carbonate

10. (8) What is meant by "growing plastics"? What are examples of two polymers that can be "grown"? What are the basic advantages and disadvantages of this idea?

see our article