Chp 4

Big Ideas

- Boundary conditions lead to quantization

- Quantum numbers are added w/ each dimension

- Observables corresponding to operators for which the wavefunction is not an eigenfunction are in a superposition of eigenstates until measured.

- Nodes increase w/ quantum #
Skills

- Solve the 1-D free particle
- Solve the 1-D PIB
- Normalize the 1-D - PIB
Model System: The 1-D Free Particle

Free: \(V = 0 \)

\[1-D \quad \hat{A} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + \hat{x} \]

\(\hat{A} \psi = E \psi \)

\[-\frac{\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} = E \cdot \psi \]

or

\[\frac{\partial^2 \psi}{\partial x^2} = -\frac{2mE}{\hbar^2} \psi \]

\[\frac{\partial^3 \psi}{\partial x^3} + 0 \cdot \frac{\partial \psi}{\partial x^2} + \frac{2mE}{\hbar^2} \psi = 0 \]

This type of differential equation is easy to solve.
\[Ay'' + By' + Cy = 0 \]

1) characteristic eq
 \[Am^2 + Bm + C = 0 \]
 solve for the roots: \(r_1, r_2 \)

2) \[y = C_1 e^{r_1 x} + C_2 e^{r_2 x} \]

3) \(C_1 \) and \(C_2 \) are constants determined by boundary conditions
for 1-D free particle < lets use s for characteristic eq >

\[S^2 + \frac{2mE}{\hbar^2} = 0 \]

\[S^2 = \frac{2mE}{\hbar^2} \Rightarrow S = \pm \sqrt{\frac{2mE}{\hbar^2}} \]

\[S = \pm \left(\frac{1}{\hbar} \sqrt{2mE} \right) \quad \text{so} \]

\[\psi = C_1 e^{\frac{i}{\hbar} \sqrt{2mE} x} + C_2 e^{-\frac{i}{\hbar} \sqrt{2mE} x} \]

we could write this as

\[\psi = C_1 \psi_+ + C_2 \psi_- \]
Note Ψ is not an eigenfunction of P_x, but Ψ_- and Ψ_+ are. For instance:

\[P_x \Psi_+ = 0 \quad \text{and} \quad -i \hbar \frac{2}{2x} \Psi_+ = -i \hbar \left(e^{\frac{i}{\hbar} \sqrt{2mE} x} \right) \left(\frac{i}{\hbar} \sqrt{2mE} \Psi_+ \right) \]

so

\[P_x = (-i \hbar)(i \hbar \sqrt{2mE}) \]

\[P_x = \sqrt{2mE} \quad (\text{or} \quad mv) \]

for Ψ_- it would be $-mv$.

The general solution, Ψ represents a superposition of states.

Note also that E is not quantized.
The 1-D PIB

\[\begin{align*}
0 & \leq x \leq 1 \\
V & = 0 \\
\text{if } x < 0 \text{ or } x > 1 \\
V & = \infty
\end{align*} \]

\[A = -\frac{\hbar^2 \frac{\partial^2}{\partial x^2}}{2m} \quad \text{(inside box, } V = 0) \]

\[i \hbar \sqrt{2\pi E} \quad -i \hbar \sqrt{2\pi E} \]

So \[\psi = c_1 e^{-} + c_2 e^{+} \]

\[A = i (c_1 - c_2) \quad \text{ define } k = \frac{\sqrt{2\pi E}}{\hbar} \]

\[\psi = A \sin(kx) + B \cos(kx) \]

Note \[\psi(0) = 0, \]

So \[B = 0 \]

\[\psi = A \sin(kx) \]